Programme Specification
BEng Mechatronics

1. Programme title
BEng Hons Mechatronics

2. Awarding institution
Middlesex University

3. Teaching institution
Middlesex University

4. Details of accreditation by professional/statutory/regulatory body

5. Final qualification
Bachelor of Engineering

6. Year of validation
Year of amendment

7. Language of study
English

8. Mode of study
FT/TKSW

9. Criteria for admission to the programme

Admission to the BEng (Hons) Mechatronics programme will require 280 UCAS tariff points normally including a minimum of 200 points from at least two science or numerate based subjects.

In addition Middlesex University general entry requirements apply as outlined in the university’s regulation B2. Applicants whose first language is not English are required to achieve 6.0 in IELTS overall (with a minimum of 5.5 in each component) or an equivalent qualification recognised by Middlesex University.

The equivalence of qualifications from outside UK will be determined according to NARIC guidelines.

We welcome applicants with a wide variety of educational experience including: A/AS levels, AVCE, BTEC National Diploma, Access Certificates, Scottish Highers, Irish Leaving Certificates (Higher Level), International Baccalaureate and a large number of equivalent home and overseas qualifications. Application from mature applicants with suitable life skills and experiences are also welcomed.

10. Aims of the programme

This programme aims to produce professional and competent Mechatronic Engineers capable of playing an active role in formulating, meeting the challenges and opportunities
This program is designed to develop and enhance problem solving and design skills through a variety of projects and hands-on laboratory sessions, including those based on teamwork. This includes design and control aspects of mechanical systems that must be operated through electrical/electronic and computer control. This programme further explores the principles underlying the design and implementation of up-to-date mechatronic systems needed in a variety of problem domains.

11. Programme outcomes

A. Knowledge and understanding

On completion of this programme the successful student will have knowledge and understanding of:

- Scientific principles and related engineering disciplines to enable the modelling and analyse complex engineering systems, processes and products and collect and analyse data and draw conclusions for the innovative solution of unfamiliar or novel engineering design problems using future developments and technologies.
- Concepts, principles and theories of the design process and an appreciation of their limitations.
- The application of a systems approach to solving complex engineering problems within the context of Mechatronics.
- Analytical techniques and engineering science relevant to Design Engineering within the context of Mechatronics.
- The issues involved in systems engineering and the range of approaches used in industry to manage the resulting complexity.
 - Developing new technologies and applications relevant to Mechatronics.
 - Current commercial, management and business practices and their limitations relating to engineering and to new product development.
 - Professional and ethical responsibilities of engineers.

The role and limitations of common

Teaching/learning methods

Students gain knowledge and understanding takes place through a combination of lectures, seminars, exercise classes, design build and test projects, forensic deconstruction, CAE and IT workshops, laboratory classes, industrial visits, group and individual project work, experimenting, constructing, analysing, assessing and discussing and self-study.

Assessment methods

Students’ knowledge and understanding is assessed by technical reports, coursework assignments, essays, presentations, and practical in-class tests.
ICT tools and limitations to common ICT tools and ability to specify requirements for computer-based engineering design tools to solve unfamiliar problems.

Characteristics of particular materials, equipment, processes and products.

B. Cognitive (thinking) skills

On completion of this programme the successful student will be able to:

1. Analyse and solve engineering problems using appropriate techniques and through critical thinking.
2. Model and analyse relevant engineering systems.
3. Fully engage with the design process.
4. Select and apply appropriate computer based methods for solving design engineering problems.
5. Fully evaluate external influences on the design process.

Design innovative systems, components or processes.

Teaching/learning methods

Students learn cognitive skills through design projects, problem solving activities and through report writing.

Assessment methods

Students’ cognitive skills are assessed by the products and systems design, with particular reference to their engagement with the design process and by coursework comprised of reports and essays.

C. Practical skills

On completion of the programme the successful student will be able to:

1. Plan, manage and undertake a design project, team or individual, including establishing user needs and technical specification, concept generation and evaluation, embodiment and detail design work, verification and review.
2. Evaluate technical risk with an awareness of the limitations of possible solutions.
3. Use relevant laboratory and test equipment.
4. Create CAD models and make physical models and prototypes.
5. Interface different technologies to develop integrated systems.
6. Apply engineering design techniques, taking into account of a selection of commercial and industrial constraints.

Teaching/learning methods

Students learn practical skills through design projects, specific skills inputs and set exercises.

Assessment methods

Students’ practical skills are assessed by individual and group projects, lab reports, coursework assignments and practical tests.
7. Apply and integrate knowledge and understanding of other engineering and non-engineering disciplines to support engineering design activities.

D. Graduate skills

On completion of this programme the successful student will be able to:

1. Communicate effectively in writing, verbally, graphically and through presentations to groups.
2. Apply mathematical methods, computer models, and a scientific approach to solving problems in engineering design.
3. Demonstrate leadership skills and the ability to work effectively as a member of a team.
4. Write computer programmes and use CAE software and general IT tools and provide technical documentation.
 Learn independently and adopt a critical approach in investigation.
5. Use technical literature and other information sources effectively including electronic media.

Teaching/learning methods

Students acquire graduate skills through design projects, competitions, problem solving activities, presentations, and through report writing.

Assessment methods

Students’ graduate skills are assessed by coursework assignments including design reports, laboratory reports, other written reports, problems sheets, case studies, software programs, industrial placement, group and individual project reports.

12. Programme structure (levels, modules, credits and progression requirements)

12.1 Overall structure of the programme

<table>
<thead>
<tr>
<th>Year 1</th>
<th>AY</th>
<th>PDE1400</th>
<th>PDE1410</th>
<th>PDE1420</th>
</tr>
</thead>
</table>

Year 2

<table>
<thead>
<tr>
<th>AYA</th>
<th>PDE2400</th>
<th>PDE2410</th>
<th>PDE2420</th>
</tr>
</thead>
</table>

Year 3

- PDE3250 - Thick Sandwich Placement (compulsory for TKSW only)

Year 3/4

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE3422 Industrial Automation and Control [30]</td>
<td></td>
</tr>
</tbody>
</table>

12.2 Levels and modules

<table>
<thead>
<tr>
<th>Level 4 (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPULSORY</td>
</tr>
</tbody>
</table>
Students must take all of the following:

- PDE1400 Design Engineering Projects 1 [30]
- PDE1420 Physical Computing: Programming [30]

Students must pass all level 4 modules to progress.

<table>
<thead>
<tr>
<th>Level 5 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPULSORY</td>
</tr>
<tr>
<td>Students must take all of the following:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PDE2400 Design Engineering Projects 2 [30]</td>
</tr>
<tr>
<td>PDE2410 Engineering in Context [30]</td>
</tr>
<tr>
<td>PDE2420 Control Systems [30]</td>
</tr>
<tr>
<td>PDE 2440 Robotics and Mechatronics [30]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 6 (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPULSORY</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Students must take all of the following:
TKSW mode only

Students must take
PDE3250 Industrial Placement (120 credits – for Diploma of Industrial Studies.

Students must take all of the following:
PDE3432 Mobile Robots and Manipulators [30]
PDE3422 Industrial Automation and Control [30]
PDE3400 Design Engineering Major project [60]

12.3 Non-compensatable modules (note statement in 12.2 regarding FHEQ levels)

<table>
<thead>
<tr>
<th>Module level</th>
<th>Module code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 6</td>
<td>PDE3400</td>
</tr>
</tbody>
</table>

13. Curriculum map
See attached.

14. Information about assessment regulations
See University Regulations
15. Placement opportunities, requirements and support (if applicable)

Students on the TKSW mode take a placement (36 to 48 weeks) at the end of year 2. A dedicated Employability Advisor helps in the search for an appropriate employer and provides students with appropriate Placement. They also provide students with appropriate guidance and support in preparation for, during and after placement. The placement forms the basis for an assessed report based on the organisation. At the start of the placement students are allocated an individual supervisor who provides support and advice for the duration of the project. Students following a TKSW placement year are supported through the process of securing a placement, which includes the legal and QAA requirements for placement learning, via tutorial support and the University Placement Office.

16. Future careers (if applicable)

As a BEng Mechatronics graduate you will have excellent career prospects; the range of potential employers will be vast across the private, public and not-for-profit sectors. They develop a commercial approach to design engineering via supported live projects with industrial partners and industrial placements. They undertake contextual studies into the nature and contexts of the profession. They interact with a variety of guest lecturers with professional backgrounds. They are supported in developing their exit portfolio, a CV and a career entry plan. Through these experiences they come to understand design in a commercial context, the nature of the design industries and to plan for their own career and development.

17. Particular support for learning (if applicable)

Meeting the learning outcomes of this programme requires active participation in the subject and all practical sessions. Supporting this level of active participation is achieved via regular contact with academic staff, productive and informed support from technical staff, supports provided by Graduate Academic Assistants (GAAs), Student Learning Assistants (SLAs) and the use of online learning materials where appropriate.
| 18. JACS code (or other relevant coding system) | H150 – Engineering Design |
| 19. Relevant QAA subject benchmark group(s) | Engineering |

20. Reference points

The following reference points were used in designing the programme:

- Middlesex University Regulations;
- Middlesex University Learning and Quality Enhancement Handbook;
- UK Standard for Professional Engineering Competence;
- Chartered Engineer and Incorporated Engineer Standard, Engineering Council UK, 2014;
- The Accreditation of Higher Education Programmes, Engineering Council UK, 2014;

IED Engineering Design Specific Learning Outcomes for EC(UK) Accredited Degree Programmes.

21. Other information
Appendix 2: Curriculum Map