Programme Specification and Curriculum Map for MEng (Hons) Mechatronics

1. Programme title	MEng Hons Mechatronics
2. Awarding institution	Middlesex University
3. Teaching institution	Middlesex University
4. Programme accredited by	
5. Final qualification	Master in Engineering with Honours
	Mechatronics
6. Academic year	2014-2015
7. Language of study	English
8. Mode of study	FT /PT/ TKSW

9. Criteria for admission to the programme

We welcome applicants with a wide variety of educational experience including: A/AS levels, AVCE, BTEC National Diploma, Access Certificates, Scottish Highers, Irish Leaving Certificates (Higher Level), International Baccalaureate and a large number of equivalent home and overseas qualifications.

Offers made on a Tariff-point basis will take into account qualifications taken and points accumulated across both years of study. Generally, these will be at 280 Tariff points with a minimum of 200 points from two 6-unit numerate awards plus a third 6-unit award (BBC). At least two of these must be from a science or numerate based subjects.

Generally, we require applicants to have achieved passes in five GCSE subjects including Maths and English at grade C or above and passed at least two subjects through to six-unit Advanced GCE or Vocational Certificate of Education (VCE).

You must have competence in English language and we normally require Grade C GCSE or an equivalent qualification. The most common English Language requirements for international students are IELTS 6.0 or TOEFL (paper based) 550 or TOEFL (internet based) 79 with specified minimum scores for each component.

Application from mature applicants with suitable life skills and experiences are also welcomed.

10. Aims of the programme

This programme aims to produce competent Design Engineers capable of playing an active role in formulating, meeting the challenges and opportunities arising in contemporary industrial and commercial practice.

Design in this programme is seen essentially as a practice both in the sense as an approach to problem solving and as a working method. Students will develop core design capabilities, which are developed and enhanced progressively through the course.

This programme explores the principles underlying the design and implementation of up-to-date digital systems needed in a variety of problem domains and provides the opportunity of realising such systems.

The programme's educational aims are:

- Develop individuals to operate proactively, challenging established thinking, while offering reasoned alternative views and solutions;
- Instil design thinking in engineering problem solving and identify opportunities for engineering innovation;
- Develop extensive knowledge and understanding of the necessary mathematical and computational tools used in the solution of real world problems, and in particular dealing with unfamiliar and complex design engineering scenarios;
- Build confidence to develop and implement modern technologies relevant to electronic products and systems;
- Develop an in-depth understanding of the scientific principles and techniques of design engineering within the context of electronic systems and products;
- Develop individuals to have the confidence in the application of

analytical and technical skills to undertake detail level design informed by a sound understanding and knowledge of design engineering through the concept, embodiment and validation stages of electronic product or systems development;

- Develop individual's management skills and to foster strong leadership qualities;
- Develop ability and confidence to apply these principles and methods in the practice of design engineering;
- Prepare individuals to engage meaningfully with projects both individually as well as in a team setting;
- Develop skills to critically evaluate appropriate processes of research, innovation, design and development;
- Develop the ability to communicate ideas effectively, verbally, in reports and by means of active participation in industry sponsored live projects;
- Raise awareness of the roles and responsibilities of Professional Design Engineers and of social and commercial environments in which they work;
- Develop practical knowledge of material properties, appropriate manufacturing processes and their cost effective use in the design and improvement of engineered products, processes and systems.

1. Programme outcomes

A. Knowledge and understanding

On completion of this programme the successful student will have knowledge and understanding of:

- (comprehensive knowledge and understanding of) scientific principles and related engineering disciplines to enable the modelling and analyse complex engineering systems, processes and products and collect and analyse data and draw conclusions for the innovative solution of unfamiliar or novel engineering design problems using future developments and technologies.
- 2. Extensive knowledge and understanding of concepts, principles and theories of the design process and an appreciation of their limitations.

- 3. Detailed understanding and application of a systems approach to solving complex engineering problems within the context of Mechatronics.
- 4. In-depth knowledge and understand analytical techniques and engineering science relevant to Design Engineering within the context of Mechatronics.
- 5. The issues involved in systems engineering and the range of approaches used in industry to manage the resulting complexity.
- 6. Developing new technologies and applications relevant to Mechatronics.
- 7. User-focussed design practice.
- 8. Working with clients.
- 9. Commercial and business practices in relation to new product development.
- 10. Management and business practices used in engineering.
- 11. Professional and ethical responsibilities of engineers.

Teaching/learning methods

Students gain knowledge and understanding takes place through a combination of lectures, seminars, exercise classes, design build and test projects, forensic deconstruction, CAE and IT workshops, laboratory classes, industrial visits, group and individual project work, experimenting, constructing, analysing, assessing and discussing and self study.

Assessment Method

Students' knowledge and understanding is assessed by technical reports, coursework assignments, essays, presentations, and practical in-class tests.

B. Cognitive (thinking) skills

On completion of this programme the successful student will be able to:

- 1. Analyse and solve engineering problems using appropriate techniques and through critical thinking.
- 2. Model and analyse relevant engineering systems.
- 3. Full engagement with the design process.
- 4. Select and apply appropriate computer based methods for solving design engineering problems.
- 5. Fully evaluate external influences on the design process.

6. Innovatively design appropriate systems, components or processes.

Teaching/learning methods

Students learn cognitive skills through design projects, problem solving activities and through report writing.

Assessment Method

Students' cognitive skills are assessed by the products and systems design, with particular reference to their engagement with the design process and by coursework comprised of reports and essays.

C. Practical skills

On completion of the programme the successful student will be able to:

- 1. Comprehensive knowledge and understanding of the role and limitations of ICT and awareness of other developing technologies related to design engineering.
- 2. Ability to apply engineering design and design management techniques, taking account of a wide range of commercial and industrial constraints in engineering projects.
- 3. Plan, manage and undertake a design project, team or individual, including establishing user needs and technical specification, concept generation and evaluation, embodiment and detail design work, verification and review.
- 4. Ability to evaluate technical risk with an awareness of the limitations of possible solutions.
- 5. Use relevant laboratory and test equipment.
- 6. Use 2D and 3D CAD to prepare models.
- 7. Physical model making and prototyping.
- 8. Interfacing and system integration.

Teaching/learning methods

Students learn practical skills through design projects, specific skills inputs and set exercises.

Assessment Method

Students' practical skills are assessed by individual and group projects, lab reports, coursework assignments and practical tests.

D. Graduate Skills

On completion of this programme the successful student will be able to:

- 1. Communicate effectively in writing, verbally, graphically and through presentations to groups.
- 2. Apply mathematical methods to solving problems.
- 3. Demonstrate leadership skills and the ability to work effectively as a member of a team.
- 4. Plan and manage projects effectively
- 5. Write computer programmes and use CAE software and general IT tools and provide technical documentation.
- 6. Apply a scientific approach to the solving of problems.
- 7. Learn independently and to adopt a critical approach in investigation.
- 8. Develop initiative and creativity in problem solving.
- 9. Autonomous practice.
- 10. Design research methods.

Teaching/learning methods

Students acquire graduate skills through

Assessment method

Students' graduate skills are assessed by coursework assignments including design reports, laboratory reports, other written reports, problems sheets, case studies, software programs, industrial placement, group and individual project reports.

12.2 Levels and modu	lies	
Level 1 (Year 1)		
COMPULSORY	OPTIONAL	PROGRESSION REQUIREMENTS
Students must take all of the following:		Student must pass all modules at level 1 to be able to progress on to
PDE1400 Design Engineering Projects 1 (30 credits)		level 2

PDE1410 Physical Computing: Electronics (30 credits)		
PDE1420 Physical Computing: Programming (30 credits)		
PDE1430 Formal Systems (30 credits)		
Level 2 (Year 2)		
COMPULSORY	OPTIONAL	PROGRESSION REQUIREMENTS
Students must take all of the following:		To progress on to a placement year students must pass all modules at
PDE2400		level 2.
Design Engineering		
Projects 2 (30 credits)		To progress into level 3 without a placement
PDE2410		students must pass
Engineering in		PDE2410 and a minimum
Context (30 credits)		of 60 credits from the
PDE2420		Additionally for
Control Systems		progression to be granted
(30 credits)		with this credit deficit the
		assessment board need
PDE 2440 Robotics 8		to be assured that the
Mochatronics		whorewithal to pass the
(30 credits)		module at a second
		attempt with no further
		teaching.
Level 3 (optional extrav	vear)	

COMPULSORY	OPTIONAL	PROGRESSION REQUIREMENTS
Students must take all of the following:	Students may also choose to take the year- long placement module:	
	PDE3250 Thick Sandwich Placement (120 credits – for Diploma of Industrial Studies.)	
Level 3 (Year 3/4)		
COMPULSORY	OPTIONAL	PROGRESSION REQUIREMENTS
Students must take all of the following:		Student must pass ALL
PDE3412 Advanced Mechatronics and Robotics (30 credits)		the MEng year.
PDE3422 Industrial Automation and Control (30 credits)		
PDE3400 Design Engineering Major Project (60 credits)		
Level + (1eal +/J)		

COMPULSORY	OPTIONAL	PROGRESSION
		REQUIREMENTS
Students must take all of the following: PDE4400 Team Project (60 credits)	Students must also choose 1 level 3 and 1 level 4 module from the following:	Student must pass ALL modules at this stage.
	PDE3410 Embedded Systems: Advanced Programming (30 credits)	
	PDE3411 System-on-a- Chip Design (30 credits)	
	PDE3420 Systems Design and Validation (30 credits)	
	PDE3253 Dissertation, Research Methods, Articulation and Professional Practice (30 credits)	
	PDE3440 Design and Innovation Management	

(30 credits)	
PDE4410 Embedded Multimedia Systems (30 credits)	
CCM4870 Wireless Networks and Mobile Computing (30 credits)	
CCM4875 Software Defined Radio and Digital Communication Systems (30 credits)	
CCM4880 Multimedia Signal Processing and Communication (30 credits)	

12.3 Non-compe	nsatable modules
Module level	Module code
3	PDE3400
4	PDE4400

13. Curriculum map See after Programme Specifications

14. Information about assessment regulations

Please refer to the University Regulations for generic guidance and the PDE Programme Handbook, under section "Assessment", for additional information.

15. Placement opportunities, requirements and support (if applicable)

Students have an option to follow this programme in Thick Sandwich (TKSW) mode. Students in TKSW mode undertake 4 years of study with the following pattern: Years 1 and 2 at the University; year 3 (36 to 48 weeks) on professional placement with an industrial partner; year 4 at the University.

Students following a TKSW placement year are supported through the process of securing a placement, which includes the legal and QAA requirements for placement learning, via tutorial support and the University Placement office.

Whilst on placement, each student is allocated a University placement tutor and a company workplace supervisor who provide the necessary support for a student to undertake a successful placement.

16. Future careers (if applicable)

Whilst on the programme students are encouraged to develop a commercial approach to design engineering via supported live projects with industrial partners and industrial placements. They undertake contextual studies into the nature and contexts of the profession. They interact with a variety of guest lecturers with professional backgrounds. They are supported in developing their exit portfolio, a CV and a career entry plan.

Through these experiences they come to understand design in a commercial context, the nature of the design industries and to plan for their own career entry and development.

17. Particular support for learning (if applicable)

Meeting the learning outcomes of this programme requires active participation in the subject and the development of autonomous practice in meeting design objectives. Supporting this level of active participation and autonomous practice is achieved via regular tutorial contact with academic staff, productive and informed support from technical staff and the use of online, resource-based learning materials where appropriate.

The subject provides extensive studio, laboratory and workshop facilities where students can engage with their coursework assignments in a supported and productive environment.

18. JACS code (or other relevant coding system)

H150 – Engineering Design

19. Relevant QAA subject benchmark group(s)

Engineering

20. Reference points

The following reference points were used in designing the programme:

- UK Standard for Professional Engineering Competence; Chartered Engineer and Incorporated Engineer Standard, Engineering Council UK, 2010.
- UK Standard for Professional Engineering Competence; The Accreditation of Higher Education Programmes, Engineering Council UK, 2008.
- IED Engineering Design Specific Learning Outcomes for EC(UK) Accredited Degree Programmes
- Subject Benchmark Statement: Engineering, The Quality Assurance Agency for Higher Education, 2006.
- Middlesex University Regulations
- Middlesex University and School of Engineering and Information Sciences Teaching Learning and Assessment policies and strategies
- University policy on equal opportunities.

21. Other information

Please note programme specifications provide a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve if s/he takes full advantage of the learning opportunities that are provided. More detailed information about the programme can be found in the rest of your programme handbook and the University Regulations.

Curriculum map for MEng Mechatronics

This section shows the highest level at which programme outcomes are to be achieved by all graduates, and maps programme learning outcomes against the modules in which they are assessed.

Programme learning outcomes

Know	ledge and understanding	Pract	tical skills
A1	Comprehensive knowledge and understanding of scientific principles and related engineering disciplines to enable the modelling and analyse complex engineering systems, processes and products and collect and analyse data and draw conclusions for the innovative solution of unfamiliar or novel engineering design problems using future developments and technologies.	C1	Comprehensive knowledge and understanding of the role and limitations of ICT and awareness of other developing technologies related to design engineering.
A2	Extensive knowledge and understanding of concepts, principles and theories of the design process and an appreciation of their limitations.	C2	Ability to apply engineering design and design management techniques, taking account of a wide range of commercial and industrial constraints in engineering projects.
A3	Detailed understanding and application of a systems approach to solving complex engineering problems within the context of Mechatronics.	C3	Plan, manage and undertake a design project, team or individual, including establishing user needs and technical specification, concept generation and evaluation, embodiment and detail design work, verification and review.

A4	Understand analytical techniques and engineering science relevant to Design Engineering within the context of Mechatronics.	C4	Ability to evaluate technical risk with an awareness of the limitations of possible solutions.
A5	The issues involved in systems engineering and the range of approaches used in industry to manage the resulting complexity.	C5	Use relevant laboratory and test equipment.
A6	Developing new technologies and applications relevant to Mechatronics.	C6	Use 2D and 3D CAD to prepare models.
A7	User-focussed design practice.	C7	Physical model making and prototyping.
A8	Working with clients.	C8	Interfacing and system integration.
A9	Commercial and business practices in relation to new product development.		
A10	Management and business practices used in engineering.		
A11	Professional and ethical responsibilities of engineers.		
Cogni	itive skills	Grad	uate Skills
B1	Analyse and solve engineering problems using appropriate techniques and through critical thinking.	D1	Communicate effectively in writing, verbally, graphically and through presentations to groups.
B2	Model and analyse relevant engineering systems.	D2	Apply mathematical methods to solving problems.
B3	Full engagement with the design process.	D3	Demonstrate leadership skills and the ability to work effectively as a member of a team.

B4	Select and apply appropriate computer based methods for solving design engineering problems.	D4	Plan and manage projects effectively
B5	Fully evaluate external influences on the design process.	D5	Write computer programmes and use CAE software and general IT tools and provide technical documentation.
B6	Innovatively design appropriate systems, components or processes.	D6	Apply a scientific approach to the solving of problems.
		D7	Learn independently and to adopt a critical approach in investigation.
		D8	Develop initiative and creativity in problem solving.
		D9	Autonomous practice.
		D10	Design research methods.

Ρ	rogr	am	me	out	cor	nes	;																											
A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8	A 9	A 1 0	A 1 1	В 1	B 2	В 3	В 4	В 5	В 6	C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	D 1	D 2	D 3	D 4	D 5	D 6	D 7	D 8	D 9	D 1 0
Н	ighe	est l	eve	l ad	chie	evec	d by	' all	gra	dua	tes																							
3	3	4	4	3	4	3	3	3	3	3	3	4	3	4	3	4	4	3	3	3	4	3	3	3	3	3	3	3	3	3	3	3	3	3

Module		Pr	ogra	amr	ne	oute	com	nes																												
Title	lule le	A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8	A 9	A 1	A 1	В 1	B 2	B 3	В 4	B 5	B 6	C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	D 1	D 2	D 3	D 4	D 5	D 6	D 7	D 8	D 9	D 1
	Mod		2	Ŭ	-	Ŭ	Ũ	ľ	Ŭ	Ŭ	0	1		2	Ũ	-	Ũ	Ŭ		2	U	-	Ŭ	Ŭ	'	Ŭ		2	Ŭ	-	Ŭ	Ŭ	'	Ŭ		0

Design Engine ering Projects 1	PDE 1400							x	х	х		х	х	х	х	х		x			X		х	х	x		х	х	х	х	х		х	x		Х
Physica I Comput ing: Electro nics	PDE 1410				Х								Х	Х									Х		Х			Х				Х	Х	х	Х	
Physica I Comput ing: Progra mming	PDE 1420				Х								х			х			Х				Х			Х	Х	Х	х		х		Х	Х		
Formal System s	PDE 1430				Х								Х	Х				Х										Х					Х			
Design Engine ering Projects 2	PDE 2400		x	x				x	x	x	х	х	х	х	х	х	x	x	Х	X	X	х	х	х	x	X	х	х	x	х	х	х	х	x	x	X
Engine ering in Context	PDE 2410		Х			Х				Х	х	х					Х			Х		Х					Х			Х			Х			Х
Control System s	PDE 2420	Х	Х	Х	Х	Х							Х	Х		Х		Х	Х		Х		Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х
Robotic s & Mechatr onics	PDE 2440	Х	Х	Х	Х	Х	Х						Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	

Thick Sandwi ch Placem ent	PDE 3250					Х			х	Х	x	x	Х	Х	Х					x	x						Х	×	Х	x		x	x		Х	
Design Engine ering Major Project	PDE 3400	Х	Х	х	Х	х	x	х	х	Х	х	x	Х	Х	х	Х	x	x	Х	X	x	x	x	x	х	x	х	x		x	Х	x	x	х	х	x
Advanc ed Mechatr onics and Robotic s	PDE 3412	х			Х								Х	Х		Х		х	Х		х		х	х	х	х	x	х				х	х	х	x	х
Industri al Automa tion and Control	PDE 3422	X	X	Х	Х	X							Х	Х		Х		Х	Х		Х		Х	Х	Х	х	Х	Х			Х	Х	х	Х	X	x
Team Project	PDE 4400	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MEng Option s																																				

Embed ded System s: Advanc ed Progra mming	PDE 3410	x		х	х		X					X	x	Х		Х	Х				Х	Х	Х	Х	Х		Х	Х	Х		X	х
System -on-a- Chip Design	PDE 3411		х	х			Х					х	х	Х		Х	Х		Х		х		Х	х			х	Х	Х	Х	Х	Х
System s Design and Validati on	PDE 3420	х	Х	х	х	х							х		Х	Х	Х		Х					Х		Х		Х				
Design Dissert ation	PDE 3253		Х		Х	Х			Х	х								Х	Х	Х				Х					Х			Х
Design and Innovati on Manage ment	PDE 3440		Х			Х			Х	Х	х				х			х		Х				Х		Х			Х			X
Embed ded Multime dia System s	PDE 4410				X		X					X	Х	X		X	X				X	X	X				X	X				

Wireles s Networ ks and Mobile Comput	CCM 4870	X	Х	Х	Х				Х	Х	X	Х		Х		Х	Х	X	X					Х	
Softwar e Defined Radio and Digital Commu nication System s	CCM 4875		X	X	x				x	X	x	x		x	X	X	X	X	×						X
Multime dia Signal Process ing and Commu nication	CCM 4880	x	X	X	×			X	X	X	X	X		×	X				X		x	X			

Programme Specification and Curriculum Map for *BEng* (Hons) Mechatronics

1. Programme title	BEng Hons Mechatronics
2. Awarding institution	Middlesex University
3. Teaching institution	Middlesex University
4. Programme accredited by	
5. Final qualification	Bachelor in Engineering with Honours Mechatronics
6. Academic year	2014-2015
7. Language of study	English
8. Mode of study	FT /PT/ TKSW

9. Criteria for admission to the programme

We welcome applicants with a wide variety of educational experience including: A/AS levels, AVCE, BTEC National Diploma, Access Certificates, Scottish Highers, Irish Leaving Certificates (Higher Level), International Baccalaureate and a large number of equivalent home and overseas qualifications.

Offers made on a Tariff-point basis will take into account qualifications taken and points accumulated across both years of study. Generally, these will be at 280 Tariff points with a minimum of 200 points from two 6-unit numerate awards plus a third 6-unit award (BBC). At least two of these must be from a science or numerate based subjects.

Generally, we require applicants to have achieved passes in five GCSE subjects including Maths and English at grade C or above and passed at least

two subjects through to six-unit Advanced GCE or Vocational Certificate of Education (VCE).

You must have competence in English language and we normally require Grade C GCSE or an equivalent qualification. The most common English Language requirements for international students are IELTS 6.0 or TOEFL (paper based) 550 or TOEFL (internet based) 79 with specified minimum scores for each component.

Application from mature applicants with suitable life skills and experiences are also welcomed.

10. Aims of the programme

This programme aims to produce competent Design Engineers capable of playing an active role in formulating, meeting the challenges and opportunities arising in contemporary industrial and commercial practice.

Design in this programme is seen essentially as a practice both in the sense as an approach to problem solving and as a working method. Students will develop core design capabilities, which are developed and enhanced progressively through the course.

This programme explores the principles underlying the design and implementation of up-to-date digital systems needed in a variety of problem domains and provides the opportunity of realising such systems.

The programme's educational aims are:

- Instil design thinking in engineering problem solving;
- Understanding of the necessary mathematical and computational tools used in the solution of real world problems, and in particular dealing with unfamiliar and complex design engineering scenarios;
- Build confidence to develop modern electronic products and systems incorporating up-to-date electrical and mechanical components along with the associated software programmes;
- Develop understanding of the scientific principles and techniques of design engineering within the context of electronic systems and products;

- Develop confidence in the application of analytical and technical skills to undertake detail level design informed by a sound understanding and knowledge of design engineering through the concept, embodiment and validation stages of electronic product or systems development;
- Develop ability to apply these principles and methods in the practice of design engineering;
- Prepare individuals to engage meaningfully with projects both individually as well as in a team setting;
- Develop the ability to communicate ideas effectively, verbally, in reports and by means of active participation in industry sponsored live projects;
- Raise awareness of the roles and responsibilities of Professional Design Engineers and of social and commercial environments in which they work;
- Develop practical knowledge of material properties, appropriate manufacturing processes and their cost effective use in the design and improvement of engineered products, processes and systems.

11. Programme outcomes

A. Knowledge and understanding

On completion of this programme the successful student will have knowledge and understanding of:

- Scientific principles and methods necessary to underpin education in engineering, to enable the modelling and analysis of non-routine engineering systems, processes and products, and collect and interpret data and draw conclusions in the solution of familiar engineering design problems recognising their limitations.
- 2. Concepts, principles and theories of the design process and an appreciation of their limitations.
- 3. And application of a systems approach to solving complex engineering problems within the context of Mechatronics.
- 4. Understand analytical techniques and engineering science relevant to Design Engineering within the context of Mechatronics.
- 5. The issues involved in systems engineering and the range of approaches used in industry to manage the resulting complexity.

- 6. Developing new technologies and applications relevant to Mechatronics.
- 7. User-focussed design practice.
- 8. Working with clients.
- 9. Commercial and business practices in relation to new product development.
- 10. Management and business practices used in engineering.
- 11. Professional and ethical responsibilities of engineers.

Teaching/learning methods

Students gain knowledge and understanding takes place through a combination of lectures, seminars, exercise classes, design build and test projects, forensic deconstruction, CAE and IT workshops, laboratory classes, industrial visits, group and individual project work, experimenting, constructing, analysing, assessing and discussing and self study.

Assessment Method

Students' knowledge and understanding is assessed by technical reports, coursework assignments, essays, presentations, and practical in-class tests.

B. Cognitive (thinking) skills

On completion of this programme the successful student will be able to:

- 1. Analyse and solve engineering problems using appropriate techniques and through critical thinking.
- 2. Model and analyse relevant engineering systems.
- 3. Full engagement with the design process.
- 4. Select and apply appropriate computer based methods for solving design engineering problems.
- 5. Fully evaluate external influences on the design process.
- 6. Innovatively design appropriate systems, components or processes.

Teaching/learning methods

Students learn cognitive skills through design projects, problem solving activities and through report writing.

Assessment Method

Students' cognitive skills are assessed by the products and systems design, with particular reference to their engagement with the design process and by coursework comprised of reports and essays.

C. Practical skills

On completion of the programme the successful student will be able to:

- Demonstrate knowledge and understanding of the role and limitations of common ICT tools and to specify requirements for computer-based engineering design tools to solve unfamiliar problems.
- 2. Ability to apply engineering design and design management techniques, taking account of a wide range of commercial and industrial constraints in engineering projects.
- 3. Plan, manage and undertake a design project, team or individual, including establishing user needs and technical specification, concept generation and evaluation, embodiment and detail design work, verification and review.
- 4. Ability to evaluate technical risk with an awareness of the limitations of possible solutions.
- 5. Use relevant laboratory and test equipment.
- 6. Use 2D and 3D CAD to prepare models.
- 7. Physical model making and prototyping.
- 8. Interfacing and system integration.

Teaching/learning methods

Students learn practical skills through design projects, specific skills inputs and set exercises.

Assessment Method

Students' practical skills are assessed by individual and group projects, lab reports, coursework assignments and practical tests.

D. Graduate Skills

On completion of this programme the successful student will be able to:

- 1. Communicate effectively in writing, verbally, graphically and through presentations to groups.
- 2. Apply mathematical methods to solving problems.
- 3. Demonstrate leadership skills and the ability to work effectively as a member of a team.
- 4. Plan and manage projects effectively
- 5. Write computer programmes and use CAE software and general IT tools and provide technical documentation.
- 6. Apply a scientific approach to the solving of problems.
- 7. Learn independently and to adopt a critical approach in investigation.
- 8. Develop initiative and creativity in problem solving.
- 9. Autonomous practice.
- 10. Design research methods.

Teaching/learning methods

Students acquire graduate skills through

Assessment method

Students' graduate skills are assessed by coursework assignments including design reports, laboratory reports, other written reports, problems sheets, case studies, software programs, industrial placement, group and individual project reports.

12. Programme structure (levels, modules, credits and progression requirements)

12. 1 Overall structure of the programme

See page 20 for a diagram of the overall structure of the programme.

12.2 Levels and mod	ules	
Level 1 (Year 1)		
COMPULSORY	OPTIONAL	PROGRESSION REQUIREMENTS

Students all of the	s must take following:		Student must pass all modules at level 1 to be
PDE140	0		2
Design I Projects credits)	ngineering 1 (30		
PDE141 Physical Electron credits)	0 Computing: ics (30		
PDE142 Physical Program credits)	0 Computing: Iming (30		
PDE143 Formal s credits)	0 Systems (30		
Level 2	(Year 2)		
COMPU	LSORY	OPTIONAL	PROGRESSION REQUIREMENTS

Students must take all of the following:	Students must take all of the following:	Students must take all of the following:
PDE2400	lonomigi	PDE2400
Design Engineering	PDE2400	Design Engineering
Projects 2 (30	Design	Projects 2 (30 credits)
credits)	Engineering	
	Projects 2 (30	PDE2410
PDE2410	credits)	Engineering in Context (30
Engineering in		credits)
Context (30 credits)	PDE2410	
	Engineering in	PDE2420
PDE2420 Control Systems (20	Context (30	Control Systems (30
control Systems (30	creans)	credits)
creatis)		
PDF 2440	Control Systems	Robotics & Mechatronics
Robotics &	(30 credits)	(30 credits)
Mechatronics (30		
credits)	PDE 2440	
	Robotics &	
	Mechatronics	
	(30 credits)	
Level 3 (optional extra	year)	

COMPULSORY	OPTIONAL	PROGRESSION REQUIREMENTS
Students must take all of the following:	Students must take all of the following:	
	PDE3250 Thick Sandwich Placement (120 credits – for Diploma of Industrial Studies.)	
Level 3 (Year 3/4)	T	
COMPULSORY	OPTIONAL	PROGRESSION REQUIREMENTS
Students must take all of the following:		Student must pass ALL
PDE3412 Advanced Mechatronics and Robotics (30 credits)		graduate.
PDE3422 Industrial Automation and Control (30 credits)		
PDE3400 Design Engineering Major Project (60 credits)		

12.3 Non-compens	atable modules
Module level	Module code

PDE3400

13. Curriculum map

See after Programme Specifications

14. Information about assessment regulations

Please refer to the University Regulations for generic guidance and the PDE Programme Handbook, under section "Assessment", for additional information.

15. Placement opportunities, requirements and support (if applicable)

Students have an option to follow this programme in Thick Sandwich (TKSW) mode. Students in TKSW mode undertake 4 years of study with the following pattern: Years 1 and 2 at the University; year 3 (36 to 48 weeks) on professional placement with an industrial partner; year 4 at the University.

Students following a TKSW placement year are supported through the process of securing a placement, which includes the legal and QAA requirements for placement learning, via tutorial support and the University Placement office.

Whilst on placement, each student is allocated a University placement tutor and a company workplace supervisor who provide the necessary support for a student to undertake a successful placement.

16. Future careers (if applicable)

Whilst on the programme students are encouraged to develop a commercial approach to design engineering via supported live projects with industrial partners and industrial placements. They undertake contextual studies into the nature and contexts of the profession. They interact with a variety of guest lecturers with professional backgrounds. They are supported in developing their exit portfolio, a CV and a career entry plan.

Through these experiences they come to understand design in a

3

commercial context, the nature of the design industries and to plan for their own career entry and development.

17. Particular support for learning (if applicable)

Meeting the learning outcomes of this programme requires active participation in the subject and the development of autonomous practice in meeting design objectives. Supporting this level of active participation and autonomous practice is achieved via regular tutorial contact with academic staff, productive and informed support from technical staff and the use of online, resource-based learning materials where appropriate.

The subject provides extensive studio, laboratory and workshop facilities where students can engage with their coursework assignments in a supported and productive environment.

18. JACS code (or other relevant coding system)

H150 – Engineering Design

19. Relevant QAA subject benchmark group(s)

Engineering

20. Reference points

The following reference points were used in designing the programme:

- UK Standard for Professional Engineering Competence; Chartered Engineer and Incorporated Engineer Standard, Engineering Council UK, 2010.
- UK Standard for Professional Engineering Competence; The Accreditation of Higher Education Programmes, Engineering Council UK, 2008.
- IED Engineering Design Specific Learning Outcomes for EC(UK) Accredited Degree Programmes
- Subject Benchmark Statement: Engineering, The Quality Assurance Agency for Higher Education, 2006.

- Middlesex University Regulations
- Middlesex University and School of Engineering and Information Sciences Teaching Learning and Assessment policies and strategies
- University policy on equal opportunities.

21. Other information N/A

Please note programme specifications provide a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve if s/he takes full advantage of the learning opportunities that are provided. More detailed information about the programme can be found in the rest of your programme handbook and the University Regulations.

Curriculum map for BEng Mechatronics

This section shows the highest level at which programme outcomes are to be achieved by all graduates, and maps programme learning outcomes against the modules in which they are assessed.

Programme learning outcomes

Knov	vledge and understanding	Prac	tical skills
A1	Scientific principles and methods necessary to underpin education in engineering, to enable the modelling and analysis of non-routine engineering systems, processes and products, and collect and interpret data and draw conclusions in the solution of familiar engineering design problems recognising their limitations.	C1	Demonstrate knowledge and understanding of the role and limitations of common ICT tools and to specify requirements for computer-based engineering design tools to solve unfamiliar problems.
A2	Concepts, principles and theories of the design process and an appreciation of their limitations.	C2	Ability to apply engineering design and design management techniques, taking account of a wide range of commercial and industrial constraints in engineering projects.
A3	And application of a systems approach to solving complex engineering problems within the context of Mechatronics.	C3	Plan, manage and undertake a design project, team or individual, including establishing user needs and technical specification, concept generation and evaluation, embodiment and detail design work,

			verification and review.
A4	Understand analytical techniques and engineering science relevant to Design Engineering within the context of Mechatronics.	C4	Ability to evaluate technical risk with an awareness of the limitations of possible solutions.
A5	The issues involved in systems engineering and the range of approaches used in industry to manage the resulting complexity.	C5	Use relevant laboratory and test equipment.
A6	Developing new technologies and applications relevant to Mechatronics.	C6	Use 2D and 3D CAD to prepare models.
A7	User-focussed design practice.	C7	Physical model making and prototyping.
A8	Working with clients.	C8	Interfacing and system integration.
A9	Commercial and business practices in relation to new product development.		
A10	Management and business practices used in engineering.		
A11	Professional and ethical responsibilities of engineers.		
Cogi	nitive skills	Grad	luate Skills
B1	Analyse and solve engineering problems using appropriate techniques and through critical thinking.	D1	Communicate effectively in writing, verbally, graphically and through presentations to groups.
B2	Model and analyse relevant engineering systems.	D2	Apply mathematical methods to solving problems.

B3	Full engagement with the design process.	D3	Demonstrate leadership skills and the ability to work effectively as a member of a team.
B4	Select and apply appropriate computer based methods for solving design engineering problems.	D4	Plan and manage projects effectively
B5	Fully evaluate external influences on the design process.	D5	Write computer programmes and use CAE software and general IT tools and provide technical documentation.
B6	Innovatively design appropriate systems, components or processes.	D6	Apply a scientific approach to the solving of problems.
		D7	Learn independently and to adopt a critical approach in investigation.
		D8	Develop initiative and creativity in problem solving.
		D9	Autonomous practice.
		D10	Design research methods.

Ρ	rogr	amı	me	out	con	nes																												
A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8	A 9	A 1 0	A 1 1	В 1	B 2	В 3	В 4	В 5	В 6	C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	D 1	D 2	D 3	D 4	D 5	D 6	D 7	D 8	D 9	D 1 0
Н	ighe	est l	eve	l ac	chie	ved	l by	all	grad	duat	es																							
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

ule	е.	Pr	ogr	am	me	ou	tco	me	s																											
Modu Title	Modul Code	A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8	A 9	A1 0	A1 1	В 1	B 2	В 3	В 4	B 5	B 6	C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	D 1	D 2	D 3	D 4	D 5	D 6	D 7	D 8	D 9	D1 0
Design Engineeri ng Projects 1	PDE14 00							Х	Х	Х		Х	Х	Х	Х	Х		Х			Х		Х	Х	х		Х	Х	Х	Х	Х		Х	Х		х
Physical Computin g: Electronic s	PDE14 10				х								х	х									х		х			Х				х	х	X	Х	
Physical Computin g: Program ming	PDE14 20				х								х			х			X				х			X	х	X	х		х		X	X		
Formal Systems	PDE14 30				Х								Х	Х				Х										Х					Х			

Design Engineeri ng Projects 2	PDE24 00		Х	Х				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Engineeri ng in Context	PDE24 10		Х			х				х	Х	Х					Х			Х		х					Х			х			Х			Х
Control Systems	PDE24 20	Х	Х	Х	Х	Х							Х	Х		Х		Х	Х		Х		Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х
Robotics & Mechatro nics	PDE 2440	Х	Х	Х	Х	Х	Х						х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	х	Х	х	Х		Х	Х	Х	Х	Х	Х	
Thick Sandwich Placemen t	PDE32 50					Х			Х	Х	Х	Х	Х	Х	Х					Х	Х						х	Х	Х	Х		Х	Х		Х	
Design Engineeri ng Major Project	PDE34 00	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	х	Х		Х	Х	Х	Х	Х	Х	Х
Advanced Mechatro nics and Robotics	PDE34 12	Х			Х								Х	Х		Х		Х	Х		Х		Х	Х	х	Х	Х	Х				Х	Х	Х	Х	х
Industrial Automatio n and Control	PDE34 22	Х	Х	Х	Х	Х							Х	Х		Х		Х	Х		Х		Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х
Team Project	PDE44 00	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MEng Options																																				

Embedde d Systems: Advanced Program ming	PDE34 10	х		Х	Х		х					х	Х	Х		Х	Х				х	Х	×	×	Х		Х	Х	×		×	Х
System- on-a-Chip Design	PDE34 11		х	х			х					х	х	х		х	х		х		х		х	х			х	х	х	х	х	Х
Systems Design and Validation	PDE34 20	х	Х	х	х	Х							х		Х	Х	Х		Х					х		Х		Х				
Design Dissertati on	PDE32 53		Х		х	Х			х	Х								Х	Х	х				х					х			Х
Design and Innovatio n Managem ent	PDE34 40		х			х			х	Х	Х				х			х		х				х		X			x			Х