Logo close icon
Section navigation
Main Baner Image

Medical Genomics MSc

Learn about the course below
October 2023
1 year full-time
2 years part-time
£9,600 (UK) *
£15,100 (EU/INT) *
Course leader
Dr Martijn Timmermans

This course is no longer accepting applications for October 2022 entry. The next start date will be October 2023.

Genomic technologies are transforming the Biomedical sciences. Recent developments in DNA sequencing are creating unprecedented opportunities in molecular diagnostics, personal medicine and (infectious) disease prevention. There is a clear need for genomics specialists that can analyse and interpret genome data in a (bio)medical context.

Why study MSc Medical Genomics at Middlesex University?

This is an interdisciplinary programme with teaching provided by Life Sciences and Computer Science research active academics as well as other experts in the field. You will gain a comprehensive understanding of how changes in the genome relate to human disease. You will be trained to pursue a career in medical genomics in academia and industry.

This programme has a strong applied and practical focus. Hands-on learning provides you with the skills needed for a successful career in medical genomics.

Course highlights

  • Integrated approach to teaching with expert input from biological, biomedical and computer scientists
  • A strong link between teaching and our biomedical research
  • Individual dissertation project allows high degree of specialisation in sub-area of own interest.

Find out more

Sign up now to receive more information about studying at Middlesex University London.

What will you study on MSc Medical Genomics?

This programme will provide you with a solid understanding of the structural complexity of genomes and how mis-regulation of genes can result in disease. In conjunction, specialist classes will provide you with practical skills in genome wide disease identification and molecular diagnostics.

Computational tools and statistical techniques for genome research and diagnostics will be introduced using real-life data-sets and will specifically focus on computer coding, data handling and the analysis of large sequential data-sets.

A strong link between research and teaching ensures you will develop good practical skills in medical genomics, preparing you for the job market.

What will you gain?

You will gain a good understanding of molecular biology principles. The programme also aims to teach good computing skills, including computer languages and the statistical analysis of big data. This will involve the design, planning of genomics experiments.


  • Modules

    • Informatics for Genomics (30 credits) - Compulsory

      In this module, you will be equipped with the theoretical and algorithmic basis for analysing large, multidimensional genomics datasets.

    • Genomics Techniques (15 credits) - Compulsory

      This module aims to give you a comprehensive understanding of molecular biology techniques in genomics.

    • Molecular Diagnostics (30 credits) - Compulsory

      The aim of this module is to provide you with the latest theory and practice of molecular diagnostics so you can gain a thorough understanding of the scope of molecular analysis technology used in the analysis and their use in diagnosis.

    • Population Genomics (15 credits) - Compulsory

      The module aims to give you a thorough understanding on how evolutionary processes affect the genome and what can be concluded from such changes.

    • Genome Structure and Function (15 credits) - Compulsory

      The module aims to give you a detailed understanding of the structural complexity of genomes, their maintenance, and the intricate regulation of gene expression via molecular interactions and biochemical modifications.

    • Ethics (15 credits) - Compulsory

      This module explores the ethical issues present in the rapidly developing area of genetic technology, including genetic testing and selection, genetic engineering, and the concept of genetic disease.

    • Dissertation (60 credits) - Compulsory

      This module comprises an individual research project where you will have the opportunity to work with a research supervisor in a project of your chosen field.

More information about this course

See the course specification for more information:

Optional modules are usually available at levels 5 and 6, although optional modules are not offered on every course. Where optional modules are available, you will be asked to make your choice during the previous academic year. If we have insufficient numbers of students interested in an optional module,  or there are staffing changes which affect the teaching, it may not be offered. If an optional module will not run, we will advise you after the module selection period when numbers are confirmed, or at the earliest time that the programme team make the decision not to run the module, and help you choose an alternative module.

We are regularly reviewing and updating our programmes to ensure you have the best learning experience. We are taking what we've learnt in the recent years and enhancing our teaching methods with new and innovative ways of learning.

We aim to model a wide range of teaching strategies and approaches on the course which you can adapt to your own setting.

How is the MSc Medical Genomics taught?

This programme is taught through a mixture of lectures, seminars, computing workshops and investigative laboratories. You are encouraged to actively engage with your learning. Group work is prominent in many modules and there will be opportunities to discuss and explore work with peers, academics and the technical team.

This programme will be delivered in a blended learning format using live interactive teaching sessions via a number of learning platforms e.g. Kaltura newrow Adobe Connect or Zoom. These sessions will be recorded so that you can return to this learning in your own time and study at your own place. Learning may be supplemented by pre-recorded lectures, demonstration of laboratory techniques or data analysis activity where students can access the information at any point. Practical sessions will either be virtual or on campus where this is possible in light of the ongoing Covid-19 outbreak.  This wide range of teaching and learning approaches are used to build up your skills and knowledge.

You will take part in online problem-solving discussions, critical debates and exercises, online workshops, and in-class activities. You will supplement all this with your own guided and independent reading. The mix of delivery modes will be varied and suitable to the content being delivered.

The programme has a strong practical element, with an emphasis on developing computational skills needed for a successful career in medical genomics and in gaining hands-on experience of genomic techniques. Access to on campus activity is subject to ongoing and further Covid-19 restrictions and virtual laboratories and pre-recorded lab and practice demonstrations will be used to facilitate your learning.

Middlesex is committed to equipping and accommodating learners fully online where they cannot reach campus, and where a second lockdown is in place. In such event, the fully online scenario will be in place to provide and support students’ learning.


Assessment is diverse and includes portfolio-work, writing a scientific paper, analysing genomic data, preparing a poster and presenting results. Additionally, you will submit a dissertation on your major research project and undertake a viva related to the work. The project will be supervised by a member of academic staff but you will be strongly encouraged to work with external partner institutions in the UK or overseas (subject to the appropriate risk assessment). In this case, you may also have a mentor based at the external institution.

Teaching and learning from 2022

We are currently reviewing our approach to teaching and learning for 2022 entry and beyond. We've learned a lot about how to give you a quality education - we aim to combine the best of our pre-pandemic teaching and learning with access to online learning and digital resources which put you more in charge of when and how you study. We will keep you updated on this throughout the application process.

Your timetable will be built around on campus sessions using our professional facilities, with online sessions for some activities where we know being virtual will add value. We’ll use technology to enhance all of your learning and give you access to online resources to use in your own time.

The table below gives you an idea of what learning looks like across a typical week. Some weeks are different due to how we schedule classes and arrange on campus sessions.

This information is likely to change slightly for 2022 entry as our plans evolve. You'll receive full information on your teaching before you start your course.

Learning structure: typical hourly breakdown in 2022/23

Live in-person on campus learning

Contact hours per week, per level:

5.6 hours

Live online learning

Average hours per week, per level:

5.6 hours

Tutor set learning activities

Average hours per week, per level:

6 hours

Outside of these hours, you’ll be expected to do independent study where you read, listen and reflect on other learning activities. This can include preparation for future classes. In a year, you’ll typically be expected to commit 1200 hours to your course across all styles of learning. If you are taking a placement, you might have some additional hours.

Definitions of terms

  • Live in-person on campus learning – This will focus on active and experiential sessions that are both:
    • Led by your tutors including seminars, lab sessions and demonstrations We’ll schedule all of this for you
    • Student-led by you and other students, like small group work and presentations.
  • Live online learning – This will include lectures, tutorials and supervision sessions led by your tutor and timetabled by us. It also includes student-led group work that takes place online

  • Tutor set learning activities – This covers activities which will be set for you by your tutor, but which you will undertake in your own time. Examples of this include watching online materials, participating in an online discussion forum, completing a virtual laboratory or reading specific texts. You may be doing this by yourself or with your course mates depending on your course and assignments. Outside of these hours, you’ll also be expected to do further independent study where you’ll be expected to learn, prepare, revise and reflect in your own time.


You have a strong support network available to you to make sure you develop all the necessary academic skills you need to do well on your course.

Our support services will be delivered online and on campus and you have access to a range of different resources so you can get the help you need, whether you’re studying at home or have the opportunity to come to campus.

You have access to one to one and group sessions for personal learning and academic support from our library and IT teams, and our network of learning experts. Our teams will also be here to offer financial advice, and personal wellbeing, mental health and disability support.

  1. Standard entry requirements
  2. International (inc. EU)
  3. How to apply
  1. UK
  2. EU/International
  3. Additional costs
  4. Scholarships and bursaries

How can the MSc Medical Genomics support your career?

As a graduates of this programme you will have a solid background in Medical Genomics. The field is fast developing and graduates with a specialisation in Medical Genomics can, for example, find work in:

  • Academia
  • Industry in clinical trials
  • Laboratory-based research assistant
  • Bioinformatician or geneticist
  • Medical Diagnostics in a hospital-based laboratory setting
  • Personalised medicine or commercial personalised DNA analysis (e.g. ancestry services)
  • Ethical advisor
  • Market research assistant

There are a number of key areas that are in need of researchers trained to do genome scale analyses, and with the recent announcement that the 100,000 genomes project is set to be extended to analyse 5 million genomes within 5 years, this demand is likely to increase exponentially.

Dr Martijn Timmermans
Senior lecturer

Dr Timmermans’ research aims to link the evolution and maintenance of biological diversity to changes in genomes. He uses genomic techniques to gain understanding of the genetics underlying phenotypic divergence.

Dr Helen Roberts
Senior lecturer

Dr Roberts gained a PhD from the University of Glasgow where she investigated the molecular events surrounding steroid-induced skeletal growth retardation. Following this, she moved to the University of Sheffield where she investigated epigenetic biomarkers which were able to predict cancer progression. She has since coordinated research projects both at KU Leuven in Belgium, where she researched the role of epigenetics and autophagy in critical illness-induced bone loss, and at Barts and the London School of Medicine and Dentistry where she used genome-wide molecular profiling to identify epigenetic biomarkers associated with inflammation and immune suppression in critically ill patients. Dr Roberts currently coordinates a research track investigating the epigenetic regulation of aberrant cellular behaviour and subsequent skeletal tissue morbidity. She has a particular interest in the role of epigenetics and autophagy in the regulation of osteosarcoma metastasis and chemoresistance.

Dr Dallas Roulston

Dr Roulston  obtained a Master of Science (Clinical Microbiology) from Queen Mary, University of London in 2011 and completed his PhD from the UCL Eastman Dental Institute. His thesis investigated the utilisation of optical methods for the mapping of microgradients in environmental parameters in dental biofilms. He holds State Registration with the Health and Care Professions Council as a Biomedical Scientist and is currently the American Society of Microbiology (ASM) Young Ambassador of Science for the United Kingdom. He regularly participates in public outreach and engagement activities and is a member of a number of microbiology and dental research societies, including Microbiology Society, Society of Applied Microbiology, British Society for Oral and Dental Research. Dr Roulston's research interests include clinical microbiology, advanced microscopy techniques, biofilms and their role in infectious disease (particularly dental pathologies and prosthetic joint infections), microbial proteomics and molecular microbiology.

We’ll carefully manage any future changes to courses, or the support and other services available to you, if these are necessary because of things like changes to government health and safety advice, or any changes to the law.

Any decisions will be taken in line with both external advice and the University’s Regulations which include information on this.

Our priority will always be to maintain academic standards and quality so that your learning outcomes are not affected by any adjustments that we may have to make.

At all times we’ll aim to keep you well informed of how we may need to respond to changing circumstances, and about support that we’ll provide to you.

Other courses

Biodiversity, Evolution and Conservation in Action MSc/PGDip

Start: September 2023

Duration: 1 year full-time

Code: PGC180

Start: October 2023

Duration: 1 year full-time, 2 years part-time

Code: PGC450

Back to top