

Programme Specification 2025-26

1.	Programme title	MSc Robotics
2.	Awarding institution	Middlesex University
3a	Teaching institution	1 Middlesex University London
3b	Language of study	English

4a Valid intake dates and mode of study

Mode of Study	Cohort	Delivery Location	Duration
Full-time (FT)	Semester 1	Hendon	1 Years
Part-time (PT)	Semester 1	Hendon	2 Years
Full-time (FT)	Semester 1	Dubai	1 Years
Part-time (PT)	Semester 1	Dubai	2 Years

4c Delivery method

On Campus/Blended Learning

5. Professional/Statutory/Regulatory body (if applicable)

N/A

6. Apprenticeship Standard (if applicable) N/A

7. Final qualification(s) available
Target Award Title(s)
MSc Robotics
Exit Award Title(s)
PGCert Robotics
PGDip Robotics

9. Criteria for admission to the programme

An Honours degree normally classified 2.2 or above, or equivalent, in engineering, computer science or a related area, with evidence of previous coding experience.

Successful applicants must have competence in English language. For international applicants whose first language is not English the requirement is that they have IELTS 6.5 (with minimum 6.0 in each components) or TOEFL internet based 87 (with at least 21 in listening & writing, 22 in speaking and 23 in reading).

10. Aims of the programme

The programme aims to:

The programme aims to develop competent and highly sought after Robotics Engineers by equipping them with the cutting-edge technologies within the area of robotics, machine learning and autonomous robotics. It will achieve this by consolidating key technological knowledge and skills in designing and developing robotic and automation systems for a variety of industry applications and for a diverse range of employment sectors such as industrial automation, robotics, systems integration, mobile robotics.

The programme will also focus on equipping students with new skills and knowledge needed for implementing technologies such as Artificial Intelligence/Machine Learning for Robotic applications, Cyber Physical Systems, Digital Twins, Remote Monitoring and Data Analytics and other such technologies by working closely with industry partners leading the development of these technologies. The students will also be exposed to developing sustainable robotic solutions that address global challenges in areas like environmental monitoring, disaster management and ageing populations.

11. **Programme learning outcomes**

Programme - Knowledge and Understanding

On completion of this programme the successful student will have a knowledge and understanding of:

- 1. Apply a comprehensive knowledge of relevant subject principles (engineering, statistics, mathematics, management) to the solution of complex problems in robotics and automation. (AHEP4 M1)
- **2.** Critically analyse hardware and software requirements of robotic systems and related sensing and control methods.
- **3.** Design, develop and test control solutions for autonomous robotic systems, including machine learning.
- **4.** Formulate and critically analyse complex robotic systems and to offer conclusions and further recommendations. (AHEP4 M2)
- **5.** Develop a system hierarchy for robotic hardware and software integration solutions, including mode of communications and networking.
- **6.** Formulate and apply fundamental simulation techniques using a systems approach to real-world processes and systems.
- **7.** Design solutions for complex problems that evidence some originality to address stakeholder needs (user, business, societal, environmental, cultural, diversity, inclusion,

etc.), as well as complying with constraints such as commercial, legal, professional and industry standards. (AHEP4 M5)

Programme - Skills

On completion of this programme the successful student will be able to:

- **8.** Select and apply computational and analytical techniques to model complex problems related to robotic systems. (AHEP4 M3)
- **9.** Build, test and optimise integrated robotic system solutions using appropriate tools and techniques.
- **10.** Produce digital models with integrated data flow between physical and virtual systems and their behaviour.
- **11.** Carry out technical literature reviews and critically evaluate these to solve complex problems related to the programme. (AHEP4 M4)
- **12.** Design and implement AI/ML solutions for robotic systems and applications.
- **13.** Evaluate the business, environmental and societal impact of solutions to complex problems and manage their impact by considering using Product Lifecycle Management approaches, including Product Data management and Application Lifecyle Management. (AHEP4 M7)
- **14.** Work effectively as a reflective practitioner as a member of a team as well as an individual and assess own and team performance. (AHEP4 M16)
- **15.** Communicate complex technical and academic content effectively in both oral and written forms to a technical and non-technical audience. (AHEP4 M17)

12. Teaching/learning methods

Students gain knowledge and understanding through a dynamic mix of teaching, learning, and assessment strategies, designed to actively engage them and enhance their comprehension. The educational context is enriched with staff-led interactive sessions, which delve into theoretical concepts in a multi-disciplinary context. These engaging sessions are complemented by hands-on laboratory activities, crucial for reinforcing theoretical knowledge through practice-led experiments and simulations, allowing students to apply their learning in tangible scenarios.

To broaden their understanding, students participate in a variety of interactive activities including workshops, group tutorials, and collaborative exercises. These are crafted to foster critical thinking, problem-solving, and the application of theory to practical, real-life societal challenges, with a particular focus on sustainable development and the UN Sustainable Development Goals (SDGs). Additionally, students undertake individual and group projects, encouraging research-informed exploration and synthesis of information, thereby deepening their subject mastery.

Guided and independent study is highly promoted, complementing formal instruction. This self-directed exploration is supported by comprehensive resources such as key concept videos provided in advance, enhancing digital learning, and offering opportunities for students to deepen their understanding, explore topics more extensively, and adopt a global perspective.

Students develop their skills within a stimulating and diverse teaching and learning framework, designed to nurture practical abilities, critical thinking, and teamwork. This dynamic setting encourages the acquisition of vital professional competencies through a blend of interactive sessions, guided learning, and academic advising.

Central to our approach are practice-led workshops that integrate multidisciplinary learning, encompassing engaging discussions, group tutorials, and hands-on laboratory work. These sessions offer an immersive experience, allowing students to apply theoretical concepts in real-world contexts, thereby enhancing their technical and analytical skills.

Seminars and laboratory exercises immerse students in experiential learning, emphasizing the application of knowledge to practical challenges and encouraging collaboration. This environment promotes active engagement and peer learning, deepening students' understanding of complex issues and fostering inclusive approaches to problem-solving.

Projects, undertaken both individually and in groups, are key to our pedagogy. They provide a platform for students to engage with comprehensive tasks that mirror industry problems, demanding creativity, critical evaluation, and strategic thinking. These projects often incorporate global and employer perspectives, highlighting the relevance of sustainable development and the application of research-informed strategies.

Utilising state-of-the-art simulation tools and engaging in testing activities, students gain insights into the practical aspects of their field, from conceptual design to tangible outcomes, preparing them for industry-specific tasks and decision-making.

With the aid of key concept videos provided in advance and a strong emphasis on digital learning, we offer a well-rounded educational experience. This approach not only ensures the acquisition of theoretical knowledge but also emphasizes the development of practical skills and competencies essential for success in the global marketplace. Through work-based learning opportunities and industry engagement, we prepare students for the realities of their future careers, all while maintaining a focus on health and well-being.

Approx. number of timetabled hours per week (at each level of study, as appropriate), including on-campus and online hours FT - 12, PT - 6

Approx. number of hours of independent study per week (at each level of study, as appropriate) FT - 28, PT - 14

13. Employability

13a Development of graduate competencies

13b Employability development

Employability Services is committed to equipping postgraduate robotics students with the tools, support, and opportunities needed to thrive in their careers. Employability Services play a pivotal role in bridging the gap between academic excellence and professional success for MSc Robotics graduates, empowering them to make a meaningful impact in a rapidly changing technological landscape.

The services provided are tailored to enhance employability and ensure industry readiness in a highly competitive field. These include:

•Employability Skills and Training: Specialised workshops and training sessions designed to develop key employability competencies for MSc Robotics students, such as project management, technical interview preparation, CV building, and advanced problem-solving. These sessions aim to refine both the technical and soft skills required for roles in robotics and related industries.

•Personalised 1:1 Support for Postgraduate Students: Dedicated career advisors provide tailored guidance to help robotics students navigate their career paths. From individual consultations on career goals and planning to identifying niche opportunities in automation, AI, and robotics sectors, students receive customised support to maximise their potential.

Employer Engagement, Vacancy Sourcing, and Advocacy: Strong collaborations with leading robotics firms, start-ups, and global companies ensure that students have access to an extensive network of potential employers. Employability Services acts as an advocate for students by promoting their unique skills and qualifications to prospective organisations, while also sourcing exclusive opportunities tailored to their expertise in robotics, automation, and intelligent systems.
Placement Administration: Full support is provided to streamline the process of securing placements, including assistance with applications, networking, and administrative tasks. For MSc Robotics students, placements are sourced with a focus on gaining experience in areas such as robotic system integration, automation solutions, and machine learning applications, enabling students to apply their academic knowledge in professional settings.

•Continuous Development Opportunities: Beyond graduation, Employability Services provides alumni with ongoing access to resources, networking opportunities, and career advice, ensuring they remain competitive and adaptable as technology and robotics industries evolve.

13c Placement and work experience opportunities (if applicable)

N/A

13d Future careers / progression

Graduates from the programme will be well-positioned to enter employment in roles requiring high-level expertise in robotics, automation, and robotic system design. With highly specialised practical skills in areas such as automated solutions, embedded systems, digital twins, and machine learning, graduates will meet the demands of a rapidly evolving global job market.

This expertise will open doors to careers in diverse sectors, including but not limited to:
•Manufacturing and Industry 4.0: Designing and implementing advanced robotics for smart factories, improving efficiency and productivity through automation and integration.
•Healthcare and MedTech: Developing surgical robots, rehabilitation devices, and autonomous systems for elder care, which are transforming the healthcare landscape.
•Autonomous Systems and Transportation: Innovating in autonomous vehicles, drones, and transport systems, leveraging AI and sensor technologies to drive the future of mobility.
•Research and Development: Pushing the boundaries of robotics through advanced research in artificial intelligence, human-robot interaction, and swarm robotics at universities, labs, or private companies.

•Energy and Environmental Solutions: Designing robotics for sustainable energy management, environmental monitoring, or hazardous material handling, which are vital for a greener future.

Graduates will also have the potential to progress to senior engineering and leadership positions as their careers evolve, managing multidisciplinary teams and overseeing large-scale projects. Alternatively, the skills acquired will prepare them for entrepreneurial ventures, enabling them to develop innovative robotics startups or consultancy firms that address emerging global challenges.

For those seeking continued academic development, the programme will serve as an excellent foundation for pursuing a PhD or engaging in cutting-edge research in robotics and intelligent systems, contributing to scientific discovery and technological advancement. By equipping graduates with a blend of theoretical knowledge, hands-on technical proficiency, and practical problem-solving capabilities, the programme ensures readiness for impactful careers in a robotics-driven world.

14. Assessment methods

Students' knowledge and understanding is assessed by a combination of individual and team coursework, project work, reports and presentations.

15. Programme Structure (level of study, modules, credits and progression requirements)

Structure is indicative for Part-time routes.

Students must take all of the compulsory modules and choose following programme requirements from the optional modules.

Non-compensatable modules are noted below.

Available Pathways

Not Applicable

<u>Year 1</u>

Year 1 Level 7 FT and PT

Code	Туре	Module Title	Credits at FHEQ Level
PDE4430	Compulsory	Mobile Robotics 2025- 26	15 at Level 7
PDE4431	Compulsory	Robot Manipulation 2025-26	15 at Level 7
PDE4446	Compulsory	Sensing and Motion Control 2025-26	30 at Level 7
PDE4444	Compulsory	Machine Learning for Engineers 2025-26	15 at Level 7
PDE4443	Compulsory	Engineering Sustainability 2025-26	15 at Level 7
PDE4435	Compulsory	Robotic Systems Integration 2025-26	30 at Level 7
PDE4445	Compulsory	Individual Project 2025-26	60 at Level 7

<u>Year 2</u>

Year 2 Level 7 PT

Code	Туре	Module Title	Credits at FHEQ Level
PDE4446	Compulsory	Sensing and Motion Control 2026-27	30 at Level 7
PDE4435	Compulsory	Robotic Systems Integration 2026-27	30 at Level 7
PDE4445	Compulsory	Individual Project 2026-27	60 at Level 7

*Please refer to your programme page on the website re availability of option modules

16. Programme-specific support for learning

Meeting the learning outcomes of this programme requires active participation in the subject and the development of autonomous practice in meeting objectives. Supporting this level of active participation and autonomous practice is achieved via regular weekly drop-in sessions organised by the module tutors, productive and informed support from technical staff and the use of online, resource-based learning materials where appropriate. The subject provides extensive facilities where students can engage with their coursework assignments in a supported and productive environment.

17. HECos code(s)

100170: Mechatronics and Robotics

18. Relevant QAA subject benchmark(s)

19. University Regulations

This programme will run in line with general University Regulations: <u>Policies | Middlesex</u> <u>University</u>

Middlesex University Assessment Regulations apply to this programme, without exception.

20. Reference points

•QAA: The Frameworks for Higher education Qualifications of UK Degree-Awarding Bodies, February 2024

•QAA Subject Benchmark Statements: Engineering, March 2023

•QAA Characteristic Statement Master's Degree, February 2020

•UK Standard for Professional Engineering Competence (UKSPEC)

•Middlesex University's Policy, Regulations and Guidelines

•Middlesex University's Learning and Quality Enhancement Handbook

•QAA The UK Quality Code for Higher Education, May 2023

The Accreditation of Higher Education Programmes (AHEP), 2020
Middlesex University policy on equal opportunities
2031 Learning Framework principles, Middlesex University

21. Other information (*if applicable*)

Please note programme specifications provide a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve if they take full advantage of the learning opportunities that are provided. More detailed information about the programme can be found in the rest of your programme handbook and the university regulations.

Curriculum map for MSc Robotics / MSc Robotics with Professional Placement (15 months) / MSc Robotics with Professional Placement (24 months)

Programme learning outcomes

Knowledge and understanding

A 1	Apply a comprehensive knowledge of relevant subject principles (engineering, statistics, mathematics, management) to the solution of complex problems in robotics and automation.
A 2	Critically analyse hardware and software requirements of robotic systems and related sensing and control methods.
A 3	Design, develop and test control solutions for autonomous robotic systems, including machine learning.
A 4	Formulate and critically analyse complex robotic systems and to offer conclusions and further recommendations.
A 5	Develop a system hierarchy for robotic hardware and software integration solutions, including mode of communications and networking.
A 6	Formulate and apply fundamental simulation techniques using a systems approach to real- world processes and systems
A 7	Design solutions for complex problems that evidence some originality to address stakeholder needs (user, business, societal, environmental, cultural, diversity, inclusion, etc.), as well as complying with constraints such as commercial, legal, professional and industry standards

Skills

B 1	Select and apply computational and analytical techniques to model complex problems related to robotic systems.
B 2	Build, test and optimise integrated robotic system solutions using appropriate tools and techniques.
В 3	Produce digital models with integrated data flow between physical and virtual systems and their behaviour.
В 4	Carry out technical literature reviews and critically evaluate these to solve complex problems related to the programme.
В 5	Design and implement AI/ML solutions for robotic systems and applications.
B 6	Evaluate the business, environmental and societal impact of solutions to complex problems and manage their impact by considering using Product Lifecycle Management approaches, including Product Data management and Application Lifecyle Management.
В 7	Work effectively as a reflective practitioner as a member of a team as well as an individual and assess own and team performance.

^B
 ⁸ Communicate complex technical and academic content effectively in both oral and written forms to a technical and non-technical audience.

Programme learning outcomes - Highest level achieved by graduates

		A3												
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7

Mapping by level of study and module

Module Title	Module Code by Level of study	A 1	A 2	A 3	A 4	A 5	A 6	A 7	B 1	B 2	B 3	B 4	B 5	B 6	B7	B8
Mobile Robotics	PDE4430		Х	Х			Х		Х	Х	Х				Х	Х
Robot Manipulation	PDE4431	Х			Х	Х	Х									Х
Sensing and Motion Control	PDE4446	Х	X	Х	Х	Х			Х	Х		Х		Х		Х
Machine Learning for Engineers	PDE4444			Х			Х	Х	Х		Х		Х			Х
Engineering Sustainability	PDE4443	Х						Х				Х		Х	Х	X
Robotic Systems Integration	PDE4435		Х	х		х		Х		Х	X	Х	Х		Х	Х
Individual Project	PDE4445	Х	Х		Х	Х	Х	X	Х	Х		Х	Х	Х		Х
Postgraduate Professional Placement	PDE4261	Х	Х		Х	Х	Х	Х		Х	Х			Х	Х	X
Postgraduate Professional Placement (extended)	PDE4262	Х	Х		Х	Х	Х	Х		Х	Х			Х	Х	Х