Xiaohong (Sharon) Gao is Professor of Vision and Imaging Science at the Department of Computer Science, Middlesex University, London. She obtained her BSc in Applied Mathematics in 1984 and MSc in Computer Graphics in 1989 in China. After being award PhD on Modelling Colour Appearance in 1994 by Loughborough University, she worked on medical images for several years. Firstly she joined St Mary’s hospital at Imperial College working on retinal images. Then she worked on brain imaging at Addenbrooke’s Hospital at the University of Cambridge.
Subsequently, she took an academic post at Middlesex University, where as a principle investigator or coordinator, she led a team working on the development of 3D brain image databases in collaboration with the Addenbrooke’s Hospital, the project that was funded by the EPSRC (2001-2004, GR/N38725/01). Built on these successes, she later coordinated an EC funded networking project of TIME (Tel-imaging in Medicine, 2005-2007). More recently, as a coordinator, Xiaohong has completed an EU FP7 Marie Curie project on Warehousing Images in the Digital Hospital: Interpretation, Infrastructure, and Integration (WIDTH, 2011-2014) with 11 partners. She was also a principle investigator for a number projects funded by the UK research councils, including Motion Correction for PET Imaging Scanners (British Council 2008), Content Based Medical Image Retrieval and Medical Image Repository (JISC, MIRAGE and MIRAGE2011, 2009-2011).
She has been a peer review college member for AHRC since 2008.
- English
- Chinese (Mandarin)
Selected publications:
Gao, X., Hui R., Tian Z., Classificaiton of CT images based on deep learning networks,Computer Methods and Programs in Biomedicine, 138:49-56, 2017. In press. (IF=2.503)
Gao X., Li W., M. Loomes, Wang Li., A fused deep learning architecture for viewpoint classification of echocardiography, Information Fusion, 36:103-113, 2017. (IF=5.667).
Gao X., Y. Wang, Y. Qian, A. Gao, Modelling of chromatic contrast for retrieval of wallpaper images, Color Research and Application, 40(4):361-373, 2015. (IF=0.847)
W. Li, Y. Qian, M. Loomes, X. Gao, The application of KAZE feature to the classification of Echocardiogram videos, MRMD 2015, LNCS 9059, pp.61-72, 2015 .
Gao X, Feaure-wise representation for both still and motion 3D medical images, 2014 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), San Diego, USA, 2014, pp. 1-4..
Qian, R. Hui, X. Gao, Retrieval of 3D surgical path based on sparse coding for image-guided neurosurgery, Signal Processing, 93(6), pp1673-1683, 2013. (IF=2.063)
Qian, L. Wang, C. Wang, X. Gao, The Synergy of 3D SIFT and Sparse Codes for Classification of Viewpoints from Echocardiogram Videos, in H. Greenspan et al. (Eds.):MCBR-CDS 2012, LNCS 7723, pp. 68–79, Springer, 2013.
Gao X., Y. Qian, M. Loomes, R. Comley, B. Barn, A. Chapman, J. Rix, R. Hui, Z. Tian, Retrieval of 3D Medical Images via Their Texture Features, International , International Journal On Advances in Software, 2011 no 3&4, 2012.
Gao X., Loomes M., Comley R., (Book Chapter), Bridging the Abridged – the Diffusion of Telemedicine in Europe and China, in Rodrigues, Díez, Sainz eds., Telemedicine and E-Health Services, Policies and Applications: Advancements and Developments, pp 451-495, IGI Global, 2012.
Gao X.W., The anatomy of Tele-neurosurgery in China, International Journal of Telemedicine and Applications, Volume 2011, Article ID 353405, 2011. DOI:10.1155/2011/353405.
Gao X. W., Y. Qian, R. Hui, The state of the art of medical imaging technology: from creation to archive and back, The Open Medical Informatics Journal, 2011, 5 (Suppl 1) 73-85.
Gao X.W., L. Podladchikova, D. Shaposhnikov, Recognition of traffic signs based on their colour and shape features extracted using human vision models, Journal of Visual Communication and Image Representation, 17:675-685, 2006. (IF=1.53)
Ali, Sharib and Dmitrieva, Mariia and Ghatwary, Noha and Bano, Sophia and Polat, Gorkem and Temizel, Alptekin and Krenzer, Adrian and Hekalo, Amar and Guo, Yun Bo and Matuszewski, Bogdan and Gridach, Mourad and Voiculescu, Irina and Yoganand, Vishnusai and Chavan, Arnav and Raj, Aryan and Nguyen, Nhan T. and Tran, Dat Q. and Huynh, Le Duy and Boutry, Nicolas and Rezvy, Shahadate and Chen, Haijian and Choi, Yoon Ho and Subramanian, Anand and Balasubramanian, Velmurugan and Gao, Xiaohong W. and Hu, Hongyu and Liao, Yusheng and Stoyanov, Danail and Daul, Christian and Realdon, Stefano and Cannizzaro, Renato and Lamarque, Dominique and Tran-Nguyen, Terry and Bailey, Adam and Braden, Barbara and East, James and Rittscher, Jens (2021) Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy. Medical Image Analysis . ISSN 1361-8415 (Accepted/In press)
Gao, Xiaohong W. and Comley, Richard A. and Khan, Maleika Heenaye-Mamode (2020) An enhanced deep learning architecture for classification of Tuberculosis types from CT lung images. In: ICIP 2020: 27th IEEE International Conference on Image Processing, 25-28 Oct 2020, Abu Dhabi, Unites Arab Emirates (Virtual Conference).
Gao, Xiaohong W. and James-Reynolds, Carl and Currie, Edward (2020) Analysis of tuberculosis severity levels from CT pulmonary images based on enhanced residual deep learning architecture. Neurocomputing , 392 . pp. 233-244. ISSN 0925-2312
Gao, Xiaohong W. and Braden, Barbara and Zhang, Leishi and Taylor, Stephen and Pang, Wei and Petridis, Miltos (2020) Case-based reasoning of a deep learning network for prediction of early stage of oesophageal cancer. In: 24th UK Symposium on Case-Based Reasoning (UKCBR 2019), 17 Dec 2019, Cambridge, UK.
Rezvy, Shahadate and Zebin, Tahmina and Pang, Wei and Taylor, Stephen and Gao, Xiaohong W. (2020) Transfer learning for endoscopy disease detection and segmentation with mask-RCNN benchmark architecture. In: EndoCV2020, 03 Apr 2020, Iowa City, United States.